Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gang Xie, ${ }^{\text {a }}$ Ming-Hua Zeng, ${ }^{\text {b }}$
San-Ping Chen ${ }^{\mathrm{a}}$ and Sheng-Li Gao ${ }^{\text {a* }}$
${ }^{\text {a }}$ Department of Chemistry, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Guangxi Normal University, Guilin 541000, Guangxi, People's Republic of China

Correspondence e-mail: gaoshli@nwu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.045$
$w R$ factor $=0.113$
Data-to-parameter ratio $=14.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[aqua(2,2'-bipyridine)manganese(II)]-μ_{2}-5-nitrobenzene-1,3-dicarboxylato- $\left.\kappa^{3} O: O^{\prime}, O^{\prime \prime}\right]$

In the title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{NO}_{6}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, the coordination polyhedron of the $\mathrm{Mn}^{\mathrm{II}}$ ion is an octahedron defined by an $\mathrm{N}_{2} \mathrm{O}_{4}$ donor set. Each pair of adjacent $\mathrm{Mn}^{\mathrm{II}}$ ions is bridged by a 5 -nitrobenzene-1,3-dicarboxylate dianion to form a chiral helical chain running along a crystallographic 2_{1} axis in the c direction with a long pitch of $19.04 \AA$. These chains are linked by $\mathrm{O}_{\text {water }}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a layer structure.

Comment

The 5-nitrobenzene-1,3-dicarboxylate dianion (nmbdc^{2-}) can act as a bridge ligand in a bis-monodentate coordination mode (Xiao et al., 2005) or a bis-bridging coordination mode (He et al., 2004). In the title compound, (I), the two carboxylate groups of the nmbdc ligand coordinate in different modes.

In (I), the coordination polyhedron of $\mathrm{Mn}^{\mathrm{II}}$ ion is an octahedron defined by an $\mathrm{N}_{2} \mathrm{O}_{4}$ donor set (Fig. 1) formed by two N atoms from a $2,2^{\prime}$-bipyridine ligand, two O atoms from an nmbdc dianion, one O atom from another nmbdc dianion and one water O atom. Each pair of adjacent $\mathrm{Mn}^{\mathrm{II}}$ ions is bridged by an nmbdc ligand to form a chiral helical chain running along a crystallographic 2_{1} axis in the c-axis direction with a long pitch of 19.04 A. Two types of coordination mode of each nmbdc ligand are observed; one carboxylate group is monodentate and the other is bidentate. These chains are linked by $\mathrm{O}_{\text {water }}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a layer structure (Fig. 2 and Fig. 3).

Experimental

A mixture of manganese acetate tetrahydrate ($0.062 \mathrm{~g}, 0.25 \mathrm{mmol}$), 5nitroisophthalic acid $(0.053 \mathrm{~g}, 0.25 \mathrm{mmol}), 2,2^{\prime}$-bipyridine $(0.039 \mathrm{~g}$,

Received 3 October 2005 Accepted 6 October 2005 Online 12 October 2005

Figure 1
The structure of the title complex, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms as spheres of arbitrary radii [symmetry code: (i) $\frac{3}{2}-x, 2-y, \frac{1}{2}+z$].

The helical chains are linked by hydrogen bonds (dashed lines) into a layer structure parallel to the $a c$ plane. For the sake of clarity, 2, 2^{\prime} bipyridine and H atoms not involved in hydrogen bonding have been omitted..

Figure 3
The layer structure of (I); for clarity, H atoms have been omitted.
$0.25 \mathrm{mmol})$, sodium hydroxide $(0.02 \mathrm{~g}, 0.5 \mathrm{mmol})$ and water $(10 \mathrm{ml})$ was stirred in air for 5 min , then transferred and sealed in a 23 ml

Teflon-lined stainless steel Parr bomb, which was heated at 433 K for 120 h and then cooled to room temperature. Colorless prismatic crystals were obtained and washed with deionized water (yield 45% based on Mn).

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{NO}_{6}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=438.25$
Orthorhombic, ${ }_{P} 2_{1} 2_{1} 2_{1}$
$a=5.2027$ (2) \AA
$b=17.8203$ (7) \AA
$c=19.0427$ (7) \AA
$V=1765.52(12) \AA^{3}$
$Z=4$
$D_{x}=1.649 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 976
reflections
$\theta=2.4-23.5^{\circ}$
$\mu=0.80 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Lath, colorless
$0.33 \times 0.13 \times 0.07 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.779, T_{\text {max }}=0.950$
9400 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.113$
$S=1.00$
3923 reflections
268 parameters
H atoms treated by a mixture of independent and constrained refinement

3923 independent reflections
2866 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=27.6^{\circ}$
$h=-6 \rightarrow 6$
$k=-21 \rightarrow 23$
$l=-24 \rightarrow 21$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)\right]$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.34 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 1540 Friedel pairs
Flack parameter: 0.04 (3)

Table 1
Selected geometric parameters ($\left(\AA^{\circ}\right)$.

$\mathrm{Mn} 1-\mathrm{O} 1$	$2.074(3)$	$\mathrm{Mn} 1-\mathrm{O} 7$	$2.108(3)$
$\mathrm{Mn} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.429(3)$	$\mathrm{Mn} 1-\mathrm{N} 1$	$2.250(3)$
$\mathrm{Mn} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.195(3)$	$\mathrm{Mn} 1-\mathrm{N} 2$	$2.267(3)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O}^{3}$	$154.81(10)$	$\mathrm{O} 7-\mathrm{Mn} 1-\mathrm{O}^{\mathrm{i}}$	$80.59(10)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 4^{\mathrm{i}}$	$100.09(10)$	$\mathrm{O} 7-\mathrm{Mn} 1-\mathrm{O} 4^{\mathrm{i}}$	$95.9(11)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 7$	$93.96(11)$	$\mathrm{O} 7-\mathrm{Mn} 1-\mathrm{N} 1$	$99.45(12)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1$	$88.61(11)$	$\mathrm{O} 7-\mathrm{Mn} 1-\mathrm{N} 2$	$157.37(12)$
$\mathrm{O}_{1}-\mathrm{Mn} 1-\mathrm{N} 2$	$106.68(11)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{O} 3^{\mathrm{i}}$	$116.50(10)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 3^{\mathrm{i}}$	$56.56(10)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 2$	$72.46(12)$
O4 $^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 1$	$161.78(11)$	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{O}^{\mathrm{i}}$	$84.30(10)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 2$	$89.65(10)$		

Symmetry code: (i) $-x+\frac{3}{2},-y+2, z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O7-H7A \cdots O4 4^{ii}	$0.85(2)$	$1.95(2)$	$2.794(4)$	$163(3)$
O7-H7B $\mathrm{O}^{\text {iii }}$	$0.85(2)$	$1.83(2)$	$2.655(4)$	$169(3)$

Symmetry codes: (ii) $-x+\frac{1}{2},-y+2, z+\frac{1}{2}$; (iii) $x-1, y, z$.

H atoms attached to C atoms were positioned geometrically and refined as riding with the constraints $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. The water H atoms were located in difference Fourier maps, and were refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.85$ (2) \AA and $\mathrm{H} \cdots \mathrm{H}=1.39$ (2) Å.

metal-organic papers

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL.

This work was supported by NSF of Shannxi Province (No. 2004B07), and the Education Department of Shannxi Province (No. 05JK302). We thank the Instrumental Analysis

Center of Northwest University for data collection on the CCD facility.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
He, H.-Y., Zhou,Y.-L. \& Zhu, L.-G. (2004). Acta Cryst. C60, m569-m571.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xiao, H.-P., Li, X.-H. \& Cheng, Y.-Q. (2005). Acta Cryst. E61, m158-m159.

